It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Programmed cell death 1 (PD-1) and its ligand 1 (PD-L1) inhibitors have quickly become standard of care for patients with advanced non-small cell lung cancer and increasing numbers of other cancer types. In this report, we discuss the clinical history, pathological evaluation, and genomic findings in a patient with metastatic lung squamous cell cancer (SCC) who developed severe nivolumab-induced pneumonitis preceding durable clinical remission after three doses of nivolumab.
Case presentation
A patient with chemotherapy-refractory, metastatic lung SCC developed symptomatic pneumonitis by week 4 after nivolumab treatment, concurrently with onset of a potent antitumor response. Despite discontinuation of nivolumab after three doses and the use of high dose oral corticosteroids for grade 3 pneumonitis, continued tumor response to a complete remission by 3 months was evident by radiographic assessment. At the time of this submission, the patient has remained in clinical remission for 14 months. High PD-L1 expression by immunohistochemistry staining was seen in intra-alveolar macrophages and viable tumor cells in the pneumonitis and recurrent tumor specimens, respectively. Tumor genomic profiling by FoundationOne targeted exome sequencing revealed a very high tumor mutation burden (TMB) corresponding to 95-96 percentile in lung SCC, i.e., 87.4-91.0 and 82.9 mut/Mb, respectively, in pre- and post-nivolumab tumor specimens. Except for one, the 13 functional genomic alterations remained the same in the diagnostic, recurrent, and post-treatment, relapsed tumor specimens, suggesting that nivolumab reset the patient's immune system against one or more preexisting tumor-associated antigens (TAAs). One potential TAA candidate is telomerase reverse transcriptase (TERT) in which an oncogenic promoter -146C>T mutation was detected. Human leukocyte antigen (HLA) typing revealed HLA-A*0201 homozygosity, which is the prevalent HLA class I allele that has been used to develop universal cancer vaccine targeting TERT-derived peptides.
Conclusions
Nivolumab could quickly reset and sustain host immunity against preexisting TAA(s) in this chemotherapy-refractory lung SCC patient. Further mechanistic studies are needed to characterize the effective immune cells and define the HLA-restricted TAA(s) and the specific T cell receptor clones responsible for the potent antitumor effect, with the aim of developing precision immunotherapy with improved effectiveness and safety.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer