It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Although discovery research has identified the importance of dozens of pro- and anti-inflammatory immune mediators in the pathogenesis, maintenance, exacerbation and resolution of inflammatory diseases, most human cohort studies have incorporated few or no immunological intermediate phenotypes in their analyses. Significant hindrances have been (1) the limited panel of biomarkers known to be readily detected in healthy human populations and (2) the stability, hence utility, of such biomarkers to repeated analysis.
Methods
The frequency and stability of 14 plasma biomarkers linked to in vivo immune regulation of allergic and autoimmune inflammatory disorders was determined in 140 healthy pediatric and adult participants. The impact of initial and multiple subsequent freeze/thaw cycles on pro-inflammatory (CCL2, CXCL10, IL-18, TNFα, IL-6), anti-inflammatory (IL-10, sTNF-RII, IL-1Ra), acute phase proteins (CRP, PTX3) and other biomarkers (sST2, IL-1RAcP) was subsequently quantified.
Results
Multiple biomarkers capable of providing an innate immune signature of inflammation were readily detected directly ex vivo in healthy individuals. These biomarker levels were unaffected when comparing paired data sets from freshly obtained, never frozen plasma or serum and matched aliquots despite extensive freeze/thaw cycles. Neither age nor sex affected stability. Similarly, no quantitative differences were found following repetitive analysis of inflammatory biomarkers in culture samples obtained following in vitro stimulation with TLR and RLR ligands.
Conclusions
A broad panel of in vivo and ex vivo cytokine, chemokine and acute phase protein biomarkers that have been linked to human chronic inflammatory disorders are readily detected in vivo and remain stable for analysis despite multiple freeze thaw cycles. These data provide the foundation and confidence for large scale analyses of panels of inflammatory biomarkers to provide better understanding of immunological mechanisms underlying health versus disease.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer