It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Mapping of shorelines and monitoring of their changes is challenging due to the large variation in shoreline position related to seasonal and tidal patterns. This study focused on a flood-prone area in the north of Java. We show the possibility of using fuzzy-crisp objects to derive shoreline positions as the transition zone between the classes water and non-water. Fuzzy c-means classification (FCM) was used to estimate the membership of pixels to these classes. A transition zone between the classes represents the shoreline, and its spatial extent was estimated using fuzzy-crisp objects. In change vector analysis (CVA) applied to water membership of successive shorelines, a change category was defined if the change magnitude between two years, T1 and T2, differed from zero, while zero magnitude corresponded to no-change category. Over several years, overall change magnitude and change directions of the shoreline allowed us to identify the trend of the fluctuating shoreline and the uncertainty distribution. The fuzzy error matrix (FERM) showed overall accuracies between 0.84 and 0.91. Multi-year patterns of water membership changes could indicate coastal processes such as: (a) high change direction and high change magnitude with a consistent positive direction probably corresponding to land subsidence and coastal inundation, while a consistent negative direction probably indicates a success in a shoreline protection scheme; (b) low change direction and high change magnitude indicating an abrupt change which may result from spring tides, extreme waves and winds; (c) high change direction and low change magnitude which could be due to cyclical tides and coastal processes; and (d) low change direction and low change magnitude probably indicating an undisturbed environment, such as changes in water turbidity or changes in soil moisture. The proposed method provided a way to analyze changes of shorelines as fuzzy objects and could be well-suited to apply to coastal areas around the globe.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer