It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Land surface temperature (LST) is a key variable in the study of the energy exchange between the land surface and the atmosphere. Among the different methods proposed to estimate LST, the quadratic split-window (SW) method has achieved considerable popularity. This method works well when the emissivities are high in both channels. Unfortunately, it performs poorly for low land surface emissivities (LSEs). To solve this problem, assuming that the LSE is known, the constant in the quadratic SW method was calculated by maintaining the other coefficients the same as those obtained for the black body condition. This procedure permits transfer of the emissivity effect to the constant. The result demonstrated that the constant was influenced by both atmospheric water vapour content (W) and atmospheric temperature (T0) in the bottom layer. To parameterize the constant, an exponential approximation between W and T0 was used. A LST retrieval algorithm was proposed. The error for the proposed algorithm was RMSE = 0.70 K. Sensitivity analysis results showed that under the consideration of NEΔT = 0.2 K, 20% uncertainty in W and 1% uncertainties in the channel mean emissivity and the channel emissivity difference, the RMSE was 1.29 K. Compared with AST 08 product, the proposed algorithm underestimated LST by about 0.8 K for both study areas when ASTER L1B data was used as a proxy of Gaofen-5 (GF-5) satellite data. The GF-5 satellite is scheduled to be launched in 2017.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer