Full text

Turn on search term navigation

Copyright © 2017 Patricia Castro-Sánchez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Phosphotyrosine phosphatases (PTPs) constitute a complex family of enzymes that control the balance of intracellular phosphorylation levels to allow cell responses while avoiding the development of diseases. Despite the relevance of CD4 T cell polarisation and effector function in human autoimmune diseases, the expression profile of PTPs during T helper polarisation and restimulation at inflammatory sites has not been assessed. Here, a systematic analysis of the expression profile of PTPs has been carried out during Th1-polarising conditions and upon PKC activation and intracellular raise of Ca2+ in effector cells. Changes in gene expression levels suggest a previously nonnoted regulatory role of several PTPs in Th1 polarisation and effector function. A substantial change in the spatial compartmentalisation of ERK during T cell responses is proposed based on changes in the dose of cytoplasmic and nuclear MAPK phosphatases. Our study also suggests a regulatory role of autoimmune-related PTPs in controlling T helper polarisation in humans. We expect that those PTPs that regulate T helper polarisation will constitute potential targets for intervening CD4 T cell immune responses in order to generate new therapies for the treatment of autoimmune diseases.

Details

Title
Gene Expression Profiles of Human Phosphotyrosine Phosphatases Consequent to Th1 Polarisation and Effector Function
Author
Castro-Sánchez, Patricia; Ramirez-Munoz, Rocio; Roda-Navarro, Pedro
Publication year
2017
Publication date
2017
Publisher
John Wiley & Sons, Inc.
ISSN
23148861
e-ISSN
23147156
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1881120548
Copyright
Copyright © 2017 Patricia Castro-Sánchez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.