It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Nowadays with the increase of demand in multimedia communication, a reliable and error-free wireless communication system is the need of the hour. MC-CDMA is being investigated as a potential radio technology to provide fourth generation (4G) and fifth generation (5G) cellular mobile services. Narrowband interference (NBI) signals corrupts the subcarriers of MC-CDMA system and as a result its performance degrades. All the available NBI elimination methods uses some kind of filters and other circuitry prior to the demodulator (receiver) to filter out NBI. So addition of extra hardware to the system makes the system complex and slow. Moreover CDMA based systems are affected by digital NBI which gets superimposed with wideband spread spectrum signal. Multiuser detection could be an efficient technique to suppress NBI and multiple access interference (MAI). Computational complexity of opti-mum multiuser detector is an impediment in the way of an efficient multiuser detector. In this paper we propose a particle swarm optimization (PSO) based optimum multiuser detector to eliminate NBI. Simulation results show that performance of proposed PSO based multiuser detector is capable of eliminating NBI with much lesser amount of computational complexity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer