It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The connectivity among distributed wetlands is critical for aquatic habitat integrity and to maintain metapopulation biodiversity. Here, we investigated the spatiotemporal fluctuations of wetlandscape connectivity driven by stochastic hydroclimatic forcing, conceptualizing wetlands as dynamic habitat nodes in dispersal networks. We hypothesized that spatiotemporal hydrologic variability influences the heterogeneity in wetland attributes (e.g., size and shape distributions) and wetland spatial organization (e.g., gap distances), in turn altering the variance of the dispersal network topology and the patterns of ecological connectivity. We tested our hypotheses by employing a DEM-based, depth-censoring approach to assess the eco-hydrological dynamics in a synthetically generated landscape and three representative wetlandscapes in the United States. Network topology was examined for two end-member connectivity measures: centroid-to-centroid (C2C), and perimeter-to-perimeter (P2P), representing the full range of within-patch habitat preferences. Exponentially tempered Pareto node-degree distributions well described the observed structural connectivity of both types of networks. High wetland clustering and attribute heterogeneity exacerbated the differences between C2C and P2P networks, with Pareto node-degree distributions emerging only for a limited range of P2P configuration. Wetlandscape network topology and dispersal strategies condition species survival and biodiversity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Purdue University, Lyles School of Civil Engineering, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197)
2 University of Padua, Department of Civil, Architectural and Environmental Engineering, Padua, Italy (GRID:grid.5608.b) (ISNI:0000 0004 1757 3470)
3 University of Florida, Soil and Water Sciences Department, Gainesville, USA (GRID:grid.15276.37) (ISNI:0000 0004 1936 8091)
4 Purdue University, Lyles School of Civil Engineering, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197); Purdue University, Agronomy Department, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197)