Full text

Turn on search term navigation

© 2017 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Plant architecture is an important agronomic trait, and improving plant architecture has attracted the attention of scientists for decades, particularly studies to create desirable plant architecture for high grain yields through breeding and culture practices. However, many important structural phenotypic traits still lack quantitative description and modeling on structural-functional relativity. This study defined new architecture indices (AIs) derived from the digitalized plant architecture using the virtual blade method. The influences of varieties and crop management on these indices and the influences of these indices on biomass accumulation were analyzed using field experiment data at two crop growth stages: early and late panicle initiation. The results indicated that the vertical architecture indices (LAI, PH, 90%-DRI, MDI, 90%-LI) were significantly influenced by variety, water, nitrogen management and the interaction of water and nitrogen, and compact architecture indices (H-CI, Q-CI, 90%-LI, 50%-LI) were significantly influenced by nitrogen management and the interaction of variety and water. Furthermore, there were certain trends in the influence of variety, water, and nitrogen management on AIs. Biomass accumulation has a positive linear correlation with vertical architecture indices and has a quadratic correlation with compact architecture indices, respectively. Furthermore, the combination of vertical and compact architecture indices is the indicator for evaluating the effects of plant architecture on biomass accumulation.

Details

Title
Quantitative descriptions of rice plant architecture and their application
Author
Li, Xumeng; Wang, Xiaohui; Peng, Yulin; Wei, Hailin; Zhu, Xinguang; Chang, Shuoqi; Li, Ming; Li, Tao; Huang, Huang
First page
e0177669
Section
Research Article
Publication year
2017
Publication date
May 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1899787002
Copyright
© 2017 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.