Full text

Turn on search term navigation

Copyright Nature Publishing Group May 2017

Abstract

The taste receptor type 1 (T1r) family perceives 'palatable' tastes. These receptors function as T1r2-T1r3 and T1r1-T1r3 heterodimers to recognize a wide array of sweet and umami (savory) tastes in sugars and amino acids. Nonetheless, it is unclear how diverse tastes are recognized by so few receptors. Here we present crystal structures of the extracellular ligand-binding domains (LBDs), the taste recognition regions of the fish T1r2-T1r3 heterodimer, bound to different amino acids. The ligand-binding pocket in T1r2LBD is rich in aromatic residues, spacious and accommodates hydrated percepts. Biophysical studies show that this binding site is characterized by a broad yet discriminating chemical recognition, contributing for the particular trait of taste perception. In contrast, the analogous pocket in T1r3LBD is occupied by a rather loosely bound amino acid, suggesting that the T1r3 has an auxiliary role. Overall, we provide a structural basis for understanding the chemical perception of taste receptors.

Details

Title
Structural basis for perception of diverse chemical substances by T1r taste receptors
Author
Nuemket, Nipawan; Yasui, Norihisa; Kusakabe, Yuko; Nomura, Yukiyo; Atsumi, Nanako; Akiyama, Shuji; Nango, Eriko; Kato, Yukinari; Kaneko, Mika K; Takagi, Junichi; Hosotani, Maiko; Yamashita, Atsuko
Pages
15530
Publication year
2017
Publication date
May 2017
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1901305802
Copyright
Copyright Nature Publishing Group May 2017