Full Text

Turn on search term navigation

Copyright Nature Publishing Group May 2017

Abstract

Stromal content heavily impacts the transcriptional classification of colorectal cancer (CRC), with clinical and biological implications. Lineage-dependent stromal transcriptional components could therefore dominate over more subtle expression traits inherent to cancer cells. Since in patient-derived xenografts (PDXs) stromal cells of the human tumour are substituted by murine counterparts, here we deploy human-specific expression profiling of CRC PDXs to assess cancer-cell intrinsic transcriptional features. Through this approach, we identify five CRC intrinsic subtypes (CRIS) endowed with distinctive molecular, functional and phenotypic peculiarities: (i) CRIS-A: mucinous, glycolytic, enriched for microsatellite instability or KRAS mutations; (ii) CRIS-B: TGF-β pathway activity, epithelial-mesenchymal transition, poor prognosis; (iii) CRIS-C: elevated EGFR signalling, sensitivity to EGFR inhibitors; (iv) CRIS-D: WNT activation, IGF2 gene overexpression and amplification; and (v) CRIS-E: Paneth cell-like phenotype, TP53 mutations. CRIS subtypes successfully categorize independent sets of primary and metastatic CRCs, with limited overlap on existing transcriptional classes and unprecedented predictive and prognostic performances.

Details

Title
Selective analysis of cancer-cell intrinsic transcriptional traits defines novel clinically relevant subtypes of colorectal cancer
Author
Isella, Claudio; Brundu, Francesco; Bellomo, Sara E; Galimi, Francesco; Zanella, Eugenia; Porporato, Roberta; Petti, Consalvo; Fiori, Alessandro; Orzan, Francesca; Senetta, Rebecca; Boccaccio, Carla; Ficarra, Elisa; Marchionni, Luigi; Trusolino, Livio; Medico, Enzo; Bertotti, Andrea
Pages
15107
Publication year
2017
Publication date
May 2017
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1903891645
Copyright
Copyright Nature Publishing Group May 2017