Full Text

Turn on search term navigation

Copyright Nature Publishing Group Jun 2017

Abstract

The energy deposition of ions in dense plasmas is a key process in inertial confinement fusion that determines the α-particle heating expected to trigger a burn wave in the hydrogen pellet and resulting in high thermonuclear gain. However, measurements of ion stopping in plasmas are scarce and mostly restricted to high ion velocities where theory agrees with the data. Here, we report experimental data at low projectile velocities near the Bragg peak, where the stopping force reaches its maximum. This parameter range features the largest theoretical uncertainties and conclusive data are missing until today. The precision of our measurements, combined with a reliable knowledge of the plasma parameters, allows to disprove several standard models for the stopping power for beam velocities typically encountered in inertial fusion. On the other hand, our data support theories that include a detailed treatment of strong ion-electron collisions.

Details

Title
Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter
Author
Cayzac, W; Frank, A; Ortner, A; Bagnoud, V; Basko, M M; Bedacht, S; Bläser, C; Blazevic, A; Busold, S; Deppert, O; Ding, J; Ehret, M; Fiala, P; Frydrych, S; Gericke, D O; Hallo, L; Helfrich, J; Jahn, D; Kjartansson, E; Knetsch, A; Kraus, D; Malka, G; Neumann, N W; Pépitone, K; Pepler, D; Sander, S; Schaumann, G; Schlegel, T; Schroeter, N; Schumacher, D; Seibert, M; Tauschwitz, An; Vorberger, J; Wagner, F; Weih, S; Zobus, Y; Roth, M
Pages
15693
Publication year
2017
Publication date
Jun 2017
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1904223791
Copyright
Copyright Nature Publishing Group Jun 2017