Full text

Turn on search term navigation

Copyright © 2017 Bakary Traoré et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we formulate a mathematical model of nonautonomous ordinary differential equations describing the dynamics of malaria transmission with age structure for the vector population. The biting rate of mosquitoes is considered as a positive periodic function which depends on climatic factors. The basic reproduction ratio of the model is obtained and we show that it is the threshold parameter between the extinction and the persistence of the disease. Thus, by applying the theorem of comparison and the theory of uniform persistence, we prove that if the basic reproduction ratio is less than 1, then the disease-free equilibrium is globally asymptotically stable and if it is greater than 1, then there exists at least one positive periodic solution. Finally, numerical simulations are carried out to illustrate our analytical results.

Details

Title
A Mathematical Model of Malaria Transmission with Structured Vector Population and Seasonality
Author
Traoré, Bakary; Sangaré, Boureima; Sado Traoré
Publication year
2017
Publication date
2017
Publisher
John Wiley & Sons, Inc.
ISSN
1110757X
e-ISSN
16870042
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1910720057
Copyright
Copyright © 2017 Bakary Traoré et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.