Full text

Turn on search term navigation

© 2017 Matsuzaki et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Constant exposure to moderate heat facilitates progenitor cell proliferation and neuronal differentiation in the hypothalamus of heat-acclimated (HA) rats. In this study, we investigated neural phenotype and responsiveness to heat in HA rats’ hypothalamic newborn cells. Additionally, the effect of hypothalamic neurogenesis on heat acclimation in rats was evaluated. Male Wistar rats (5 weeks old) were housed at an ambient temperature (Ta) of 32°C for 6 days (STHA) or 40 days (LTHA), while control (CN) rats were kept at a Ta of 24°C for 6 days (STCN) or 40 days (LTCN). Bromodeoxyuridine (BrdU) was intraperitoneally injected daily for five consecutive days (50 mg/kg/day) after commencing heat exposure. The number of hypothalamic BrdU-immunopositive (BrdU+) cells in STHA and LTHA rats was determined immunohistochemically in brain samples and found to be significantly greater than those in respective CN groups. In LTHA rats, approximately 32.6% of BrdU+ cells in the preoptic area (POA) of the anterior hypothalamus were stained by GAD67, a GABAergic neuron marker, and 15.2% of BrdU+ cells were stained by the glutamate transporter, a glutamatergic neuron marker. In addition, 63.2% of BrdU+ cells in the POA were immunolabeled with c-Fos. Intracerebral administration of the mitosis inhibitor, cytosine arabinoside (AraC), interfered with the proliferation of neural progenitor cells and acquired heat tolerance in LTHA rats, whereas the selected ambient temperature was not changed. These results demonstrate that heat exposure generates heat responsive neurons in the POA, suggesting a pivotal role in autonomic thermoregulation in long-term heat-acclimated rats.

Details

Title
Neural progenitor cell proliferation in the hypothalamus is involved in acquired heat tolerance in long-term heat-acclimated rats
Author
Matsuzaki, Kentaro; Katakura, Masanori; Sugimoto, Naotoshi; Hara, Toshiko; Hashimoto, Michio; Shido, Osamu
First page
e0178787
Section
Research Article
Publication year
2017
Publication date
Jun 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1911175580
Copyright
© 2017 Matsuzaki et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.