Full text

Turn on search term navigation

© 2017 Bartel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Caspase-6 is a member of the executioner caspases and known to play a role in innate and adaptive immune processes. However, its role in infectious diseases has rarely been addressed yet. We here examined the impact of caspase-6 in an in vivo infection model using the Gram-negative rod Burkholderia pseudomallei, causing the infectious disease melioidosis that is endemic in tropical and subtropical areas around the world. Caspase-6-/- and C57BL/6 wild type mice were challenged with B. pseudomallei for comparing mortality, bacterial burden and inflammatory cytokine expression. Bone-marrow derived macrophages were used to analyse the bactericidal activity in absence of caspase-6. Caspase-6 deficiency was associated with higher mortality and bacterial burden in vivo after B. pseudomallei infection. The bactericidal activity of caspase-6-/- macrophages was impaired compared to wild type cells. Caspase-6-/- mice showed higher expression of the IL-1β gene, known to be detrimental in murine melioidosis. Expression of the IL-10 gene was also increased in caspase-6-/- mice as early as 6 hours after infection. Treatment with exogenous IL-10 rendered mice more susceptible against B. pseudomallei challenge. Thus, caspase-6 seems to play a crucial role for determining resistance against the causative agent of melioidosis. To our knowledge this is the first report showing that caspase-6 is crucial for mediating resistance in an in vivo infection model. Caspase-6 influences the expression of detrimental cytokines and therefore seems to be important for achieving a well-balanced immune response that contributes for an efficient elimination of the pathogen.

Details

Title
Caspase-6 mediates resistance against Burkholderia pseudomallei infection and influences the expression of detrimental cytokines
Author
Bartel, Alexander; Göhler, André; Hopf, Verena; Breitbach, Katrin
First page
e0180203
Section
Research Article
Publication year
2017
Publication date
Jul 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1916991282
Copyright
© 2017 Bartel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.