Full Text

Turn on search term navigation

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Dams have been a fundamental part of the U.S. national agenda over the past two hundred years. Recently, however, dam removal has emerged as a strategy for addressing aging, obsolete infrastructure and more than 1,100 dams have been removed since the 1970s. However, only 130 of these removals had any ecological or geomorphic assessments, and fewer than half of those included before- and after-removal (BAR) studies. In addition, this growing, but limited collection of dam-removal studies is limited to distinct landscape settings. We conducted a meta-analysis to compare the landscape context of existing and removed dams and assessed the biophysical responses to dam removal for 63 BAR studies. The highest concentration of removed dams was in the Northeast and Upper Midwest, and most have been removed from 3rd and 4th order streams, in low-elevation (< 500 m) and low-slope (< 5%) watersheds that have small to moderate upstream watershed areas (10–1000 km2) with a low risk of habitat degradation. Many of the BAR-studied removals also have these characteristics, suggesting that our understanding of responses to dam removals is based on a limited range of landscape settings, which limits predictive capacity in other environmental settings. Biophysical responses to dam removal varied by landscape cluster, indicating that landscape features are likely to affect biophysical responses to dam removal. However, biophysical data were not equally distributed across variables or clusters, making it difficult to determine which landscape features have the strongest effect on dam-removal response. To address the inconsistencies across dam-removal studies, we provide suggestions for prioritizing and standardizing data collection associated with dam removal activities.

Details

Title
Landscape context and the biophysical response of rivers to dam removal in the United States
Author
Foley, Melissa M; Magilligan, Francis J; Torgersen, Christian E; Major, Jon J; Anderson, Chauncey W; Connolly, Patrick J; Wieferich, Daniel; Shafroth, Patrick B; Evans, James E; Infante, Dana; Craig, Laura S
First page
e0180107
Section
Research Article
Publication year
2017
Publication date
Jul 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1917693809
Copyright
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.