Abstract

Different symmetry breaking ways determine various magnetization switching modes driven by spin–orbit torques (SOT). For instance, an applied or effective field parallel to applied current is indispensable to switch magnetization with perpendicular anisotropy by SOT. Besides of this mode, here we experimentally demonstrate a distinct field-free switching mode in a T-type magnetic system with structure of MgO/CoFeB/Ta/CoFeB/MgO where a perpendicular layer with tilted easy axis was coupled to an in-plane layer with a uniaxial easy axis. Current was applied orthogonal to both easy axes and thus also normal to an in-plane effective field experienced by the perpendicular layer. Dynamic calculation shows perpendicular layer could be switched at the same time as the in-plane layer is switched. These field-free switching modes realized in the same T-type magnetic system might expedite the birth of multi-state spin memories or spin logic devices which could be operated by all electric manners.

Spin-orbit torque (SOT) induced magnetization switching facilitates all electric multi-state spin memories and spin logic devices. Here the authors show a new SOT field-free switching mode where the perpendicular layer with tilted easy axis is coupled to an in-plane layer with a uniaxial easy axis.

Details

Title
Spin–orbit torque switching in a T-type magnetic configuration with current orthogonal to easy axes
Author
Kong, W J 1 ; Wan, C H 1 ; Wang, X 1 ; Tao, B S 1 ; Huang, L 1 ; Fang, C 1 ; Guo, C Y 1 ; Guang, Y 1   VIAFID ORCID Logo  ; Irfan, M 1   VIAFID ORCID Logo  ; Han, X F 2 

 Institute of Physics, Chinese Academy of Sciences, Beijing National Laboratory for Condensed Matter Physics, Beijing, China (GRID:grid.458438.6) (ISNI:0000 0004 0605 6806) 
 Institute of Physics, Chinese Academy of Sciences, Beijing National Laboratory for Condensed Matter Physics, Beijing, China (GRID:grid.458438.6) (ISNI:0000 0004 0605 6806) ; University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419) ; Songshan Lake Materials Laboratory, Dongguan, China (GRID:grid.410726.6) 
Publication year
2019
Publication date
Jan 2019
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1920304928
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.