Full text

Turn on search term navigation

© 2017 Yea et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study evaluated the feasibility of utilizing a 3D-printed anthropomorphic patient-specific head phantom for patient-specific quality assurance (QA) in intensity-modulated radiotherapy (IMRT). Contoured left and right head phantoms were converted from DICOM to STL format. Fused deposition modeling (FDM) was used to construct an anthropomorphic patient-specific head phantom with a 3D printer. An established QA technique and the patient-specific head phantom were used to compare the calculated and measured doses. When the established technique was used to compare the calculated and measured doses, the gamma passing rate for γ ≤ 1 was 97.28%, while the gamma failure rate for γ > 1 was 2.72%. When the 3D-printed patient-specific head phantom was used, the gamma passing rate for γ ≤ 1 was 95.97%, and the gamma failure rate for γ > 1 was 4.03%. The 3D printed patient-specific head phantom was concluded to be highly feasible for patient-specific QA prior to complicated radiotherapy procedures such as IMRT.

Details

Title
Feasibility of a 3D-printed anthropomorphic patient-specific head phantom for patient-specific quality assurance of intensity-modulated radiotherapy
Author
Yea, Ji Woon; Park, Jae Won; Kim, Sung Kyu; Dong Youn Kim; Jae Gu Kim; Chan Young Seo; Jeong, Won Hyo; Jeong, Man Youl; Se An Oh
First page
e0181560
Section
Research Article
Publication year
2017
Publication date
Jul 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1921147299
Copyright
© 2017 Yea et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.