It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Materials possessing antipolar cation motions are currently receiving a lot of attention because they are fundamentally intriguing while being technologically promising. Most studies devoted to these complex materials have focused on their static properties or on their zone-center phonons. As a result, some important dynamics of antipolar cation distortions, such as the temperature behavior of their phonon frequencies, have been much less investigated, despite the possibility to exhibit unusual features. Here, we report the results and analysis of atomistic simulations revealing and explaining such dynamics for BiFeO3 bulks being subject to hydrostatic pressure. It is first predicted that cooling such material yields the following phase transition sequence: the cubic paraelectric Pmm state at high temperature, followed by an intermediate phase possessing long-range-ordered in-phase oxygen octahedral tiltings, and then the Pnma state that is known to possess antipolar cation motions in addition to in-phase and antiphase oxygen octahedral tiltings. Antipolar cation modes are found to all have high phonon frequencies that are independent of temperature in the paraelectric phase. On the other hand and in addition to antipolar cation modes increasing in number, some phonons possessing antipolar cation character are rather soft in the intermediate and Pnma states. Analysis of our data combined with the development of a simple model reveals that such features originate from a dynamical mixing between pure antipolar cation phonons and fluctuations of oxygen octahedral tiltings, as a result of a specific trilinear energetic coupling. The developed model can also be easily applied to predict dynamics of antipolar cation motions for other possible structural paths bringing Pmm to Pnma states.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
2 Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA; Institute of Physics and Physics Department of Southern Federal University, Rostov-na-Donu, Russia