Full Text

Turn on search term navigation

© 2017 Chen, Wright. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To characterize and interpret arterial spin labeling (ASL) reactive hyperemia of calf muscles for a better understanding of the microcirculation in peripheral arterial disease (PAD), we present a physiological model incorporating oxygen transport, tissue metabolism, and vascular regulation mechanisms. The model demonstrated distinct effects between arterial stenoses and microvascular dysfunction on reactive hyperemia, and indicated a higher sensitivity of 2-minute thigh cuffing to microvascular dysfunction than 5-minute cuffing. The recorded perfusion responses in PAD patients (n = 9) were better differentiated from the normal subjects (n = 7) using the model-based analysis rather than characterization using the apparent peak and time-to-peak of the responses. The analysis results suggested different amounts of microvascular disease within the patient group. Overall, this work demonstrates a novel analysis method and facilitates understanding of the physiology involved in ASL reactive hyperemia. ASL reactive hyperemia with model-based analysis may be used as a noninvasive microvascular assessment in the presence of arterial stenoses, allowing us to look beyond the macrovascular disease in PAD. A subgroup who will have a poor prognosis after revascularization in the patients with critical limb ischemia may be associated with more severe microvascular diseases, which may potentially be identified using ASL reactive hyperemia.

Details

Title
A physiological model for interpretation of arterial spin labeling reactive hyperemia of calf muscles
Author
Hou-Jen, Chen; Wright, Graham A
First page
e0183259
Section
Research Article
Publication year
2017
Publication date
Aug 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1932146602
Copyright
© 2017 Chen, Wright. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.