Full text

Turn on search term navigation

© 2017 Claassens et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

High-level, recombinant production of membrane-integrated proteins in Escherichia coli is extremely relevant for many purposes, but has also been proven challenging. Here we study a combination of transcriptional fine-tuning in E. coli LEMO21(DE3) with different codon usage algorithms for heterologous production of membrane proteins. The overexpression of 6 different membrane proteins is compared for the wild-type gene codon usage variant, a commercially codon-optimized variant, and a codon-harmonized variant. We show that transcriptional fine-tuning plays a major role in improving the production of all tested proteins. Moreover, different codon usage variants significantly improved production of some of the tested proteins. However, not a single algorithm performed consistently best for the membrane-integrated production of the 6 tested proteins. In conclusion, for improving heterologous membrane protein production in E. coli, the major effect is accomplished by transcriptional tuning. In addition, further improvements may be realized by attempting different codon usage variants, such as codon harmonized variants, which can now be easily generated through our online Codon Harmonizer tool.

Details

Title
Improving heterologous membrane protein production in Escherichia coli by combining transcriptional tuning and codon usage algorithms
Author
Claassens, Nico J; Siliakus, Melvin F; Spaans, Sebastiaan K; Creutzburg, Sjoerd C A; Nijsse, Bart; Schaap, Peter J; Quax, Tessa E F; van der Oost, John
First page
e0184355
Section
Research Article
Publication year
2017
Publication date
Sep 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1938528788
Copyright
© 2017 Claassens et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.