Abstract

Analysis of the spatial arrangement of molecular features enables the engineering of synthetic nanostructures and the understanding of natural ones. The ability to acquire a comprehensive set of pairwise proximities between components would satisfy an increasing interest in investigating individual macromolecules and their interactions, but current biochemical techniques detect only a single proximity partner per probe. Here, we present a biochemical DNA nanoscopy method that records nanostructure features in situ and in detail for later readout. Based on a conceptually novel auto-cycling proximity recording (APR) mechanism, it continuously and repeatedly produces proximity records of any nearby pairs of DNA-barcoded probes, at physiological temperature, without altering the probes themselves. We demonstrate the production of dozens of records per probe, decode the spatial arrangements of 7 unique probes in a homogeneous sample, and repeatedly sample the same probes in different states.

Details

Title
A DNA nanoscope via auto-cycling proximity recording
Author
Schaus, Thomas E 1 ; Woo, Sungwook 1 ; Feng Xuan 1 ; Chen, Xi 1 ; Yin, Peng 1 

 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA 
Pages
1-9
Publication year
2017
Publication date
Sep 2017
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1942616839
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.