Full text

Turn on search term navigation

© 2017 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Incompleteness and inaccuracy of DNA barcode databases is considered an important hindrance to the use of metabarcoding in biodiversity analysis of zooplankton at the species-level. Species barcoding by Sanger sequencing is inefficient for organisms with small body sizes, such as zooplankton. Here mitochondrial cytochrome c oxidase I (COI) fragment barcodes from 910 freshwater zooplankton specimens (87 morphospecies) were recovered by a high-throughput sequencing platform, Ion Torrent PGM. Intraspecific divergence of most zooplanktons was < 5%, except Branchionus leydign (Rotifer, 14.3%), Trichocerca elongate (Rotifer, 11.5%), Lecane bulla (Rotifer, 15.9%), Synchaeta oblonga (Rotifer, 5.95%) and Schmackeria forbesi (Copepod, 6.5%). Metabarcoding data of 28 environmental samples from Lake Tai were annotated by both an indigenous database and NCBI Genbank database. The indigenous database improved the taxonomic assignment of metabarcoding of zooplankton. Most zooplankton (81%) with barcode sequences in the indigenous database were identified by metabarcoding monitoring. Furthermore, the frequency and distribution of zooplankton were also consistent between metabarcoding and morphology identification. Overall, the indigenous database improved the taxonomic assignment of zooplankton.

Details

Title
Indigenous species barcode database improves the identification of zooplankton
Author
Yang, Jianghua; Zhang, Xiaowei; Zhang, Wanwan; Sun, Jingying; Xie, Yuwei; Zhang, Yimin; Burton, G Allen, Jr; Yu, Hongxia
First page
e0185697
Section
Research Article
Publication year
2017
Publication date
Oct 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1947047567
Copyright
© 2017 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.