Full Text

Turn on search term navigation

© 2017, Crest et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

How organ-shaping mechanical imbalances are generated is a central question of morphogenesis, with existing paradigms focusing on asymmetric force generation within cells. We show here that organs can be sculpted instead by patterning anisotropic resistance within their extracellular matrix (ECM). Using direct biophysical measurements of elongating Drosophila egg chambers, we document robust mechanical anisotropy in the ECM-based basement membrane (BM) but not in the underlying epithelium. Atomic force microscopy (AFM) on wild-type BM in vivo reveals an anterior–posterior (A–P) symmetric stiffness gradient, which fails to develop in elongation-defective mutants. Genetic manipulation shows that the BM is instructive for tissue elongation and the determinant is relative rather than absolute stiffness, creating differential resistance to isotropic tissue expansion. The stiffness gradient requires morphogen-like signaling to regulate BM incorporation, as well as planar-polarized organization to homogenize it circumferentially. Our results demonstrate how fine mechanical patterning in the ECM can guide cells to shape an organ.

DOI: http://dx.doi.org/10.7554/eLife.24958.001

Details

Title
Organ sculpting by patterned extracellular matrix stiffness
Author
Crest Justin; Diz-Muñoz Alba; Dong-Yuan, Chen; Fletcher, Daniel A; Bilder, David
University/institution
U.S. National Institutes of Health/National Library of Medicine
Publication year
2017
Publication date
2017
Publisher
eLife Sciences Publications Ltd.
e-ISSN
2050084X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1950545988
Copyright
© 2017, Crest et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.