Abstract

Second-order nonlinear spectroscopy has proven to be a powerful tool in elucidating key chemical and structural characteristics at a variety of interfaces. However, the presence of interfacial potentials may lead to complications regarding the interpretation of second harmonic and vibrational sum frequency generation responses from charged interfaces due to mixing of absorptive and dispersive contributions. Here, we examine by means of mathematical modeling how this interaction influences second-order spectral lineshapes. We discuss our findings in the context of reported nonlinear optical spectra obtained from charged water/air and solid/liquid interfaces and demonstrate the importance of accounting for the interfacial potential-dependent χ(3) term in interpreting lineshapes when seeking molecular information from charged interfaces using second-order spectroscopy.

Details

Title
Second-order spectral lineshapes from charged interfaces
Author
Ohno, Paul E 1   VIAFID ORCID Logo  ; Hong-fei, Wang 2 ; Geiger, Franz M 1 

 Department of Chemistry, Northwestern University, Evanston, IL, USA 
 Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China 
Pages
1-9
Publication year
2017
Publication date
Oct 2017
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1952478746
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.