Full Text

Turn on search term navigation

© 2017 Hanigan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The mechanism of action of histone deacetylase inhibitors (HDACi) is mainly attributed to the inhibition of the deacetylase catalytic activity for their histone substrates. In this study, we analyzed the abundance of class I HDACs in the cytosolic, nuclear soluble and chromatin bound cellular fractions in breast cancer cells after HDACi treatment. We found that potent N-hydroxy propenamide-based HDACi induced a concentration dependent decrease in the HDAC1 associated with chromatin and a lasting concomitant increase in cytoplasmic HDAC1 while maintaining total protein expression. No such change occurred with HDAC2 or 8, however, an increase in cytoplasmic non-phosphorylated HDAC3 was also observed. The subcellular re-equilibration of HDAC1 was subsequent to the accumulation of acetylated histones and might be cell cycle dependent. This study suggests that the biological activity of a subset of N-hydroxy propenamide-based HDACi may stem from direct competition with histone substrates of HDACs as well as from spatial separation from their substrates in the nucleus and/or change in post-translational modification status of HDACs.

Details

Title
Scaffold dependent histone deacetylase (HDAC) inhibitor induced re-equilibration of the subcellular localization and post-translational modification state of class I HDACs
Author
Hanigan, Thomas W; Taha, Taha Y; Aboukhatwa, Shaimaa M; Frasor, Jonna; Petukhov, Pavel A
First page
e0186620
Section
Research Article
Publication year
2017
Publication date
Oct 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1952660974
Copyright
© 2017 Hanigan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.