Full text

Turn on search term navigation

Copyright © 2016, Halonen et al.; licensee Beilstein-Institut. This work is licensed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cell viability monitoring is an important part of biosafety evaluation for the detection of toxic effects on cells caused by nanomaterials, preferably by label-free, noninvasive, fast, and cost effective methods. These requirements can be met by monitoring cell viability with a capacitance-sensing integrated circuit (IC) microchip. The capacitance provides a measurement of the surface attachment of adherent cells as an indication of their health status. However, the moist, warm, and corrosive biological environment requires reliable packaging of the sensor chip. In this work, a second generation of low temperature co-fired ceramic (LTCC) technology was combined with flip-chip bonding to provide a durable package compatible with cell culture. The LTCC-packaged sensor chip was integrated with a printed circuit board, data acquisition device, and measurement-controlling software. The packaged sensor chip functioned well in the presence of cell medium and cells, with output voltages depending on the medium above the capacitors. Moreover, the manufacturing of microfluidic channels in the LTCC package was demonstrated.

Details

Title
Low temperature co-fired ceramic packaging of CMOS capacitive sensor chip towards cell viability monitoring
Author
Halonen Niina; Kilpijärvi Joni; Sobocinski Maciej; Datta-Chaudhuri Timir; Hassinen Antti; Prakash, Someshekar B; Möller, Peter; Abshire, Pamela; Kellokumpu Sakari; Lloyd Spetz Anita
University/institution
U.S. National Institutes of Health/National Library of Medicine
Pages
1871-1877
Publication year
2016
Publication date
2016
Publisher
Beilstein-Institut zur Föerderung der Chemischen Wissenschaften
e-ISSN
21904286
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1953034690
Copyright
Copyright © 2016, Halonen et al.; licensee Beilstein-Institut. This work is licensed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.