Full text

Turn on search term navigation

© 2016, Koyama et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Animals collect sensory information from the world and make adaptive choices about how to respond to it. Here, we reveal a network motif in the brain for one of the most fundamental behavioral choices made by bilaterally symmetric animals: whether to respond to a sensory stimulus by moving to the left or to the right. We define network connectivity in the hindbrain important for the lateralized escape behavior of zebrafish and then test the role of neurons by using laser ablations and behavioral studies. Key inhibitory neurons in the circuit lie in a column of morphologically similar cells that is one of a series of such columns that form a developmental and functional ground plan for building hindbrain networks. Repetition within the columns of the network motif we defined may therefore lie at the foundation of other lateralized behavioral choices.

DOI: http://dx.doi.org/10.7554/eLife.16808.001

Details

Title
A circuit motif in the zebrafish hindbrain for a two alternative behavioral choice to turn left or right
Author
Koyama Minoru; Minale Francesca; Shum, Jennifer; Nishimura Nozomi; Schaffer, Chris B; Fetcho, Joseph R
University/institution
U.S. National Institutes of Health/National Library of Medicine
Publication year
2016
Publication date
2016
Publisher
eLife Sciences Publications Ltd.
e-ISSN
2050084X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1953389348
Copyright
© 2016, Koyama et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.