Abstract

Data-independent acquisition mass spectrometry promises higher performance in terms of quantification and reproducibility compared to data-dependent acquisition mass spectrometry methods. To enable high-accuracy quantification of Staphylococcus aureus proteins, we have developed a global ion library for data-independent acquisition approaches employing high-resolution time of flight or Orbitrap instruments for this human pathogen. We applied this ion library resource to investigate the time-resolved adaptation of S. aureus to the intracellular niche in human bronchial epithelial cells and in a murine pneumonia model. In epithelial cells, abundance changes for more than 400 S. aureus proteins were quantified, revealing, e.g., the precise temporal regulation of the SigB-dependent stress response and differential regulation of translation, fermentation, and amino acid biosynthesis. Using an in vivo murine pneumonia model, our data-independent acquisition quantification analysis revealed for the first time the in vivo proteome adaptation of S. aureus. From approximately 2.15 × 105S. aureus cells, 578 proteins were identified. Increased abundance of proteins required for oxidative stress response, amino acid biosynthesis, and fermentation together with decreased abundance of ribosomal proteins and nucleotide reductase NrdEF was observed in post-infection samples compared to the pre-infection state.

Details

Title
A global Staphylococcus aureus proteome resource applied to the in vivo characterization of host-pathogen interactions
Author
Michalik, Stephan 1 ; Depke, Maren 1 ; Murr, Annette 1 ; Manuela Gesell Salazar 1 ; Kusebauch, Ulrike 2 ; Sun, Zhi 2 ; Meyer, Tanja C 1 ; Surmann, Kristin 1 ; Pförtner, Henrike 1 ; Hildebrandt, Petra 1 ; Weiss, Stefan 1   VIAFID ORCID Logo  ; Palma Medina, Laura Marcela 1 ; Gutjahr, Melanie 1 ; Hammer, Elke 1 ; Becher, Dörte 3 ; Pribyl, Thomas 4 ; Hammerschmidt, Sven 4   VIAFID ORCID Logo  ; Deutsch, Eric W 2 ; Bader, Samuel L 2 ; Hecker, Michael 5 ; Moritz, Robert L 2 ; Mäder, Ulrike 1 ; Völker, Uwe 6 ; Schmidt, Frank 6 

 Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany 
 Institute for Systems Biology, Seattle, WA, USA 
 Institute for Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany 
 Interfaculty Institute for Genetics and Functional Genomics, Department Genetics of Microorganisms, Ernst-Moritz-Arndt-University, Greifswald, Germany 
 Institute for Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany; ZIK-FunGene, Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany 
 Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany; ZIK-FunGene, Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany 
Pages
1-16
Publication year
2017
Publication date
Sep 2017
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1953982133
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.