It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Breast cancer is a heterogeneous disease due to its clinico-pathological features and response to therapy. The classification of breast tumors based on their hormone receptor status and pathologic features. Post-translational histone modifications come into prominence for regulation of gene expression in cancer pathogenesis. Here, we analyzed dysregulation of H3K9ac and H3K27me3-enriched subtype-specific genes using ChIP-on-chip assay in breast cancer tumors and matched normal tissue samples. Breast cancer tumors were classified according to St Gallen Consensus 2013. Our results indicated that the promoter regions of genes modified by H3K9ac epi-mark are commonly associated with tumors with HER2-positive and TNBC subtype. H3K27me3-enriched genes were comprised of Luminal A and B1 subtypes. We constructed a network structure to elicit epigenetically regulated genes related with breast cancer progression. The central genes of the network (RUNX1, PAX3, GATA4 and DLX5) were subjected for epigenetically dysregulation in association with different breast cancer subtypes. Our study submits epigenetic mechanisms are crucial to elicit subtype-specific regulation in breast cancer and ChIP-on-chip assay provides a better understanding for breast tumorigenesis and new approaches for prevention and treatment.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Oncogenetics, Centre Jean Perrin, Clermont-Ferrand, France; INSERM U 1240, IMOST, Clermont-Ferrand, France; Department of Toxicology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
2 Department of Oncogenetics, Centre Jean Perrin, Clermont-Ferrand, France; INSERM U 1240, IMOST, Clermont-Ferrand, France
3 University Blaise Pascal, Institute Pascal UMR 6602 CNRS/UBP, Aubiere, France
4 INSERM U 1240, IMOST, Clermont-Ferrand, France; Department of Biopathology, Centre Jean Perrin, Clermont-Ferrand, France