It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
An approach is proposed to solve the coupled Gross-Pitaevskii equations (CGP) of the 3-species BEC in an analytical way under the Thomas-Fermi approximation (TFA). It was found that, when the strength of a kind of interaction increases and crosses over a critical value, a specific type of state-transition will occur and will cause a jump in the total energy. Due to the jump, the energy of the lowest symmetric state becomes considerably higher. This leaves a particular opportunity for the lowest asymmetric state to replace the symmetric states as the ground state. It was further found that the critical values are related to the singularity of either the matrix or a sub-matrix of the CGP. These critical values are not arising from the TFA but inherent in the CGP, and they can be analytically expressed. Furthermore, a model (in which two kinds of atoms separated from each other asymmetrically) has been proposed for the evaluation of the energy of the lowest asymmetric state. With this model the emergence of the asymmetric ground state is numerically confirmed under the TFA. The theoretical formalism of this paper is quite general and can be generalized for BEC with more than three species.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Physics, Shaoguan University, Shaoguan, P. R. China; State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
2 School of Physics, Sun Yat-Sen University, Guangzhou, P. R. China