It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Beta amyloid peptides (Aβ) are known risk factors involved in cognitive impairment, neuroinflammatory and apoptotic processes in Alzheimer’s disease (AD). Phosphodiesterase 2 (PDE2) inhibitors increase the intracellular cAMP and/or cGMP activities, which may ameliorate cognitive deficits associated with AD. However, it remains unclear whether PDE2 mediated neuroapoptotic and neuroinflammatory events, as well as cognitive performance in AD are related to cAMP/cGMP-dependent pathways. The present study investigated how the selective PDE2 inhibitor BAY60-7550 (BAY) affected Aβ-induced learning and memory impairment in two classic rodent models. IL-22 and IL-17, Bax and Bcl-2, PKA/PKG and the brain derived neurotropic factor (BDNF) levels in hippocampus and cortex were detected with immunoblotting assay. The results showed that BAY reversed Aβ-induced cognitive impairment as shown in the water maze test and step-down test. Moreover, BAY treatment reversed the Aβ-induced changes in IL-22 and IL-17 and the ratio of Bax/Bcl-2. Changes in cAMP/cGMP levels, PKA/PKG and BDNF expression were also prevented by BAY. These effects of BAY on memory performance and related neurochemical changes were partially blocked by the PKG inhibitor KT 5823. These findings indicated that the protective effects of BAY against Aβ-induced memory deficits might involve the regulation of neuroinflammation and neuronal apoptotic events.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Clinical Laboratory, Xuzhou No. 1 People’s Hospital, Xuzhou, Jiangsu Province, China
2 Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
3 Department of Clinical Pharmacy, Hangzhou First People’s Hospital, Nanjing Medical University, Hangzhou, Zhejiang Province, China
4 Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
5 School of Pharmaceutical Engineering & Life Sciences, Changzhou University, Changzhou, Jiangsu Province, China
6 Xuzhou Medical University, Xuzhou, Jiangsu Province, China
7 Changzhou No. 2 People’s Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, China