It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Liver R2* mapping is often degraded by the low signal-to-noise ratio (SNR) especially in the presence of severe iron. This study aims to improve liver R2* mapping at low SNRs by averaging decay curves before the process of curve-fitting. Independently filtering echo images by nonlocal means (NLM) demonstrated improved quality of R2* mapping, but may introduce new errors due to the nonlinear nature of the NLM filter, during which the averaging weights may vary with different image contents at multiple echo times. In addition, the image denoising effect of the NLM may decline when no sufficient similar patches are available. To overcome these drawbacks, we proposed to filter decay curves instead of images. In this novel scheme, decay curves were averaged in a local window, each with a weight assigned according to the curve-similarity measured by the distance between one of the neighboring curves and the targeted one. The proposed method was tested on simulated, phantom and patient data. The results demonstrate that the proposed method can provide more accurate R2* mapping compared with the NLM algorithm, and hence has the potential to improve diagnosis and therapy in patients with liver iron.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Guangdong Provincial Key Laborary of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
2 Guangdong Provincial Key Laborary of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China; School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
3 Schools of Medicine & Dentistry, Plymouth University, Plymouth, UK
4 Cardiovascular Sciences Research Centre, St George’s University of London, London, UK; Royal Brompton Hospital and Imperial College, London, UK