It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Sortase A (SrtA) is a transpeptidase widely used to site-specifically modify peptides and proteins and shows promise for industrial applications. In this study, a novel strategy was developed for constructing immobilized-SrtA as a robust and recyclable enzyme via direct immobilization of extracellularly expressed SrtA in the fermentation supernatant using magnetic particles. Efficient extracellular SrtA expression was achieved in Escherichia coli through molecular engineering, including manipulation of the protein transport pathway, codon optimization, and co-expression of molecular chaperones to promote expressed SrtA secretion into the medium at high levels. Subsequently, a simple one-step protocol was established for the purification and immobilization of SrtA containing a His-tag from the fermentation supernatant onto a nickel-modified magnetic particle. The immobilized SrtA was proved to retain full enzymatic activity for peptide-to-peptide ligation and protein modification, and was successfully reused for five cycles without obvious activity loss.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
2 Department of Chemistry, University of Florida, Gainesville, Florida, United States of America