It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Seed priming is to expose seeds to specific compounds to enhance seed germination. Few studies of plant immune activation through seed priming have been conducted. Here, we introduce an emerging technology that combines seed priming with elicitation of plant immunity using biologically active compounds. This technology is named ‘seed defense biopriming’ (SDB). We prepared heat-stable metabolites from 1,825 root-associated Bacillus spp. isolated from the rhizosphere in South Korea. These preparations were tested for their ability to induce SDB in cucumber and pepper seeds and trigger plant immunity. SDB with heat-stable metabolites of the selected Bacillus gaemokensis strain PB69 significantly reduced subsequent bacterial diseases under in vitro and field conditions and increased fruit yield. Transcriptional analysis of induced resistance marker genes confirmed the upregulation of salicylic acid, ethylene, and jasmonic acid signaling. Mortality of the insect pest Spodoptera litura increased when larvae fed on SDB-treated cucumber tissues. Analysis of the causative bacterial metabolites identified a leucine-proline cyclodipeptide and a commercially obtained leucine-proline cyclodipeptide induced similar results as treatment with the bacterial preparation. Our results indicate that SDB treatment with the heat-stable bacterial metabolite effectively elicited immunity and controlled disease in seedlings to whole plants, thereby increasing yield even under field conditions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Molecular Phytobacteriology Laboratory, KRIBB, Daejeon, South Korea
2 Eco-Friendly New Materials Research Center, KRICT, Daejeon, South Korea
3 Molecular Phytobacteriology Laboratory, KRIBB, Daejeon, South Korea; Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, South Korea