It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Methane concentration in caves is commonly much lower than the external atmosphere, yet the cave CH4 depletion causal mechanism is contested and dynamic links to external diurnal and seasonal temperature cycles unknown. Here, we report a continuous 3-year record of cave methane and other trace gases in Jenolan Caves, Australia which shows a seasonal cycle of extreme CH4 depletion, from ambient ~1,775 ppb to near zero during summer and to ~800 ppb in winter. Methanotrophic bacteria, some newly-discovered, rapidly consume methane on cave surfaces and in external karst soils with lifetimes in the cave of a few hours. Extreme bacterial selection due to the absence of alternate carbon sources for growth in the cave environment has resulted in an extremely high proportion 2–12% of methanotrophs in the total bacteria present. Unexpected seasonal bias in our cave CH4 depletion record is explained by a three-step process involving methanotrophy in aerobic karst soil above the cave, summer transport of soil-gas into the cave through epikarst, followed by further cave CH4 depletion. Disentangling cause and effect of cave gas variations by tracing sources and sinks has identified seasonal speleothem growth bias, with implied palaeo-climate record bias.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 ANSTO Environmental Research, Lucas Heights, Australia
2 University of Wollongong, Centre for Atmospheric Chemistry, Wollongong, Australia
3 University of Sydney, Sydney Institute of Agriculture, Sydney, Australia
4 University of Sydney, School of Life and Environmental Sciences, Sydney, Australia
5 formerly CSIRO, Technology Court, Pullenvale, Australia