It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Ultrafine particles, more heterojunction interfaces and amorphous materials can effectively enhance the photocatalytic activity of photocatalysts. In this work, a facile in-situ precipitation method was developed to prepare ultrafine amorphous iron oxyhydroxide/ultrathin g-C3N4 nanosheets heterojunction composites. The amorphous iron oxyhydroxide possessed an ultrafine particle size and a wide range of visible light absorption. In this process, the ultrafine particles not only shortened the diffusion distance of photogenerated carriers, but also facilitated the formation of more heterojunctions with ultrathin g-C3N4 nanosheets. The photocatalytic activities were evaluated using rhodamine B, methylene blue, and methyl orange as pollution models under visible light irradiation. Notably, the optimal photocatalytic activity of a-FeOOH/CNNS-800 composite is ~17.8 times higher than that of CNNS towards the degradation of rhodamine B under visible light. The outstanding photocatalytic activities were ascribed to the narrower band gap, the enhanced visible light absorbance, abundant heterojunction interfaces, and the effective separation of the photogenerated charges driven by the matched band edge in the heterostructures. We trusted that the facile and easy-to-extend synthesis method can be further expanded to synthesize other ultrafine semiconductors coupled with g-C3N4 for enhancing the photocatalytic activities.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer