Abstract

Although cisplatin plays a central role in cancer chemotherapy, the mechanisms of cell response to this drug have been unexplored. The present study demonstrates the relationships between the intracellular pH (pHi), cell bioenergetics and the response of cervical cancer to cisplatin. pHi was measured using genetically encoded sensor SypHer2 and metabolic state was accessed by fluorescence intensities and lifetimes of endogenous cofactors NAD(P)H and FAD. Our data support the notion that cisplatin induces acidification of the cytoplasm early after the treatment. We revealed in vitro that a capacity of cells to recover and maintain alkaline pHi after the initial acidification is the crucial factor in mediating the cellular decision to survive and proliferate at a vastly reduced rate or to undergo cell death. Additionally, we showed for the first time that pHi acidification occurs after prolonged therapy in vitro and in vivo, and this, likely, favors metabolic reorganization of cells. A metabolic shift from glycolysis towards oxidative metabolism accompanied the cisplatin-induced inhibition of cancer cell growth in vitro and in vivo. Overall, these findings contribute to an understanding of the mechanisms underlying the responsiveness of an individual cell and tumor to therapy and are valuable for developing new therapeutic strategies.

Details

Title
Chemotherapy with cisplatin: insights into intracellular pH and metabolic landscape of cancer cells in vitro and in vivo
Author
Shirmanova, Marina V 1 ; Druzhkova, Irina N 1 ; Lukina, Maria M 2 ; Dudenkova, Varvara V 2 ; Ignatova, Nadezhda I 1 ; Snopova, Ludmila B 1 ; Shcheslavskiy, Vladislav I 3 ; Belousov, Vsevolod V 4 ; Zagaynova, Elena V 1 

 Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia 
 Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia; Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia 
 Becker & Hickl GmbH, Berlin, Germany 
 Molecular technologies laboratory, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia 
Pages
1-13
Publication year
2017
Publication date
Aug 2017
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1957284112
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.