Abstract

Arabidopsis thaliana mlo2 mlo6 mlo12 triple mutant plants exhibit complete immunity against infection by otherwise virulent obligate biotrophic powdery mildew fungi such as Golovinomyces orontii. While this phenotype is well documented, the interaction profile of the triple mutant with other microbes is underexplored and incomplete. Here, we thoroughly assessed and quantified the infection phenotypes of two independent powdery mildew-resistant triple mutant lines with a range of microbes. These microorganisms belong to three kingdoms of life, engage in diverse trophic lifestyles, and deploy different infection strategies. We found that interactions with microbes that do not directly enter leaf epidermal cells were seemingly unaltered or showed even enhanced microbial growth or symptom formation in the mlo2 mlo6 mlo12 triple mutants, as shown for Pseudomonas syringae and Fusarium oxysporum. By contrast, the mlo2 mlo6 mlo12 triple mutants exhibited reduced host cell entry rates by Colletotrichum higginsianum, a fungal pathogen showing direct penetration of leaf epidermal cells comparable to G. orontii. Together with previous findings, the results of this study strengthen the notion that mutations in genes MLO2, MLO6 and MLO12 not only restrict powdery mildew colonization, but also affect interactions with a number of other phytopathogens.

Details

Title
The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens
Author
Acevedo-Garcia, Johanna 1 ; Gruner, Katrin 1   VIAFID ORCID Logo  ; Reinstädler, Anja 1 ; Kemen, Ariane 2 ; Kemen, Eric 2   VIAFID ORCID Logo  ; Cao, Lingxue 3 ; Takken, Frank L W 3 ; Reitz, Marco U 4 ; Schäfer, Patrick 4 ; Richard J O’Connell 5 ; Kusch, Stefan 1   VIAFID ORCID Logo  ; Kuhn, Hannah 1   VIAFID ORCID Logo  ; Panstruga, Ralph 1   VIAFID ORCID Logo 

 RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Aachen, Germany 
 Max Planck Institute for Plant Breeding Research, Cologne, Germany 
 University of Amsterdam, Swammerdam Institute for Life Sciences, Molecular Plant Pathology, Amsterdam, The Netherlands 
 University of Warwick, The School of Life Sciences, Gibbet Hill Campus, Coventry, UK 
 UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France 
Pages
1-15
Publication year
2017
Publication date
Aug 2017
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1957296285
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.