It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Alzheimer’s disease (AD) is characterized by deposition of amyloid beta (Aβ) peptides into senile plaques in the brain. While most familial mutations are associated with early-onset AD, recent studies report the AD-protective nature of two genetic human Aβ variants, i.e. A2T and A2V, in the heterozygous state. The mixture of A2V Aβ1-6 (Aβ6) hexapeptide and WT Aβ1–42 (Αβ42) is also found neuroprotective. Motivated by these findings, in this study we investigate the effects of WT, A2V, and A2T Aβ6 hexapeptide binding on the monomeric WT Aβ42 landscape. For this purpose, we have performed extensive atomistic Replica Exchange Molecular Dynamics simulations, elucidating preferential binding of Aβ42 with the A2V and A2T hexapeptides compared to WT Aβ6. A notable reorganization of the Aβ42 landscape is revealed due to hexapeptide association, as manifested by lowering of transient interactions between the central and C-terminal hydrophobic patches. Concurrently, Aβ6-bound Aβ42 monomer exhibits alternative structural features that are strongly dependent on the hexapeptide sequence. For example, a central helix is more frequently populated within the A2T-bound monomer, while A2V-bound Aβ42 is often enhanced in overall disorder. Taken together, the present simulations offer novel molecular insights onto the effect of the N-terminal hexapeptide binding on the Aβ42 monomer structure, which might help in explaining their reported amyloid inhibition properties.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA