It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In order to understand the physical properties of materials it is necessary to determine the 3D positions of all atoms. There has been significant progress towards this goal using electron tomography. However, this method requires a relatively high electron dose and often extended acquisition times which precludes the study of structural dynamics such as defect formation and evolution. In this work we describe a method that enables the determination of 3D atomic positions with high precision from single high resolution electron microscopic images of graphene that show dynamic processes. We have applied this to the study of electron beam induced defect coalescence and to long range rippling in graphene. The latter strongly influences the mechanical and electronic properties of this material that are important for possible future applications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 National Tsing-Hua University, Department of Engineering and System Science, Hsin-Chu, Taiwan
2 University of Oxford, Department of Materials, Oxford, UK
3 University of Oxford, Department of Materials, Oxford, UK; Electron Physical Sciences Imaging Centre, Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire, UK
4 University of Antwerp, EMAT, Department of Physics, Antwerp, Belgium