It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The complex phase transitions of vanadium dioxide (VO2) have drawn continual attention for more than five decades. Dynamically, ultrafast electron diffraction (UED) with atomic-scale spatiotemporal resolution has been employed to study the reaction pathway in the photoinduced transition of VO2, using bulk and strain-free specimens. Here, we report the UED results from 10-nm-thick crystalline VO2 supported on Al2O3(0001) and examine the influence of surface stress on the photoinduced structural transformation. An ultrafast release of the compressive strain along the surface-normal direction is observed at early times following the photoexcitation, accompanied by faster motions of vanadium dimers that are more complex than simple dilation or bond tilting. Diffraction simulations indicate that the reaction intermediate involved on picosecond times may not be a single state, which implies non-concerted atomic motions on a multidimensional energy landscape. At longer times, a laser fluence multiple times higher than the thermodynamic enthalpy threshold is required for complete conversion from the initial monoclinic structure to the tetragonal lattice. For certain crystalline domains, the structural transformation is not seen even on nanosecond times following an intense photoexcitation. These results signify a time-dependent energy distribution among various degrees of freedom and reveal the nature of and the impact of strain on the photoinduced transition of VO2.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Chemistry, University of Houston, Houston, Texas, United States
2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, China
3 Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas, United States
4 Department of Chemistry, University of Houston, Houston, Texas, United States; Texas Center for Superconductivity, University of Houston, Houston, Texas, United States