It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Deregulated activity of Ras GTPases has been observed in many types of human cancers, and contributes to the diverse aspects of carcinogenesis. Although the significance in tumorigenesis has been widely accepted and many therapeutic drugs are under development, little attention has been dedicated to the development of sensors for the Ras activity in vivo. Therefore, based on the split firefly luciferase complementation strategy, we developed a monomolecular bioluminescent biosensor to image endogenous Ras activity in living subject. In this biosensor, two inactive luciferase fragments are sandwiched by Raf-1, whose conformation changes upon GTP-Ras binding. Thus, the Ras activity can be surrogated by the intensity of the complementary luciferase. The bioluminescence analyses demonstrated that this novel biosensor behaved the robust and sensitive reporting efficiency in response to the dynamical changes of Ras activity, both in living colorectal cancer cells and in vivo. Compared to the traditional method, such as the pull-down assay, the bioluminescent sensor is simply, noninvasive, faster and more sensitive for the analysis of the endogenous Ras activity. This innovative work opens up the way for monitoring the preclinical curative effect and high-throughput screening of therapeutic drugs targeting Ras pathways.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
2 Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China; Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
3 Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China