Abstract

Denitrifying sulfur conversion-assisted enhanced biological phosphorus removal (DS-EBPR) has recently been developed for simultaneously removing nitrogen and phosphorus from saline sewage with minimal sludge production. This novel process could potentially enable sustainable wastewater treatment. Yet, the core functional bacteria and their roles are unknown. Here, we used high-throughput 16S rRNA gene sequencing coupled with principal coordinates analysis and ANOVA with Tukey’s test to unravel the spatiotemporal heterogeneity of functional bacteria and their synergetic and competitive interactions. We did not find any obvious spatial heterogeneity within the bacterial population in different size-fractionated sludge samples, but the main functional bacteria varied significantly with operation time. Thauera was enriched (9.26~13.63%) as become the core functional genus in the DS-EBPR reactors and links denitrifying phosphorus removal to sulfide oxidation. The other two functional genera were sulfate-reducing Desulfobacter (4.31~12.85%) and nitrate-reducing and sulfide-oxidizing Thiobacillus (4.79~9.92%). These bacteria cooperated in the DS-EBPR process: Desulfobacter reduced sulfate to sulfide for utilization by Thiobacillus, while Thauera and Thiobacillus competed for nitrate and sulfide as well as Thauera and Desulfobacter competed for acetate. This study is the first to unravel the interactions among core functional bacteria in DS-EBPR, thus improving our understanding of how this removal process works.

Details

Title
Spatiotemporal heterogeneity of core functional bacteria and their synergetic and competitive interactions in denitrifying sulfur conversion-assisted enhanced biological phosphorus removal
Author
Zhang, Yan 1 ; Yu, Mei 1 ; Guo, Jianhua 2 ; Wu, Di 3 ; Zheng-Shuang, Hua 4 ; Chen, Guang-Hao 3 ; Lu, Hui 1 

 School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China 
 Advanced Water Management Centre (AWMC), The University of Queensland, St. Lucia, Australia 
 Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch), Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Hong Kong, PR China 
 State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou, PR China 
Pages
1-11
Publication year
2017
Publication date
Sep 2017
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1957752489
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.