It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Denitrifying sulfur conversion-assisted enhanced biological phosphorus removal (DS-EBPR) has recently been developed for simultaneously removing nitrogen and phosphorus from saline sewage with minimal sludge production. This novel process could potentially enable sustainable wastewater treatment. Yet, the core functional bacteria and their roles are unknown. Here, we used high-throughput 16S rRNA gene sequencing coupled with principal coordinates analysis and ANOVA with Tukey’s test to unravel the spatiotemporal heterogeneity of functional bacteria and their synergetic and competitive interactions. We did not find any obvious spatial heterogeneity within the bacterial population in different size-fractionated sludge samples, but the main functional bacteria varied significantly with operation time. Thauera was enriched (9.26~13.63%) as become the core functional genus in the DS-EBPR reactors and links denitrifying phosphorus removal to sulfide oxidation. The other two functional genera were sulfate-reducing Desulfobacter (4.31~12.85%) and nitrate-reducing and sulfide-oxidizing Thiobacillus (4.79~9.92%). These bacteria cooperated in the DS-EBPR process: Desulfobacter reduced sulfate to sulfide for utilization by Thiobacillus, while Thauera and Thiobacillus competed for nitrate and sulfide as well as Thauera and Desulfobacter competed for acetate. This study is the first to unravel the interactions among core functional bacteria in DS-EBPR, thus improving our understanding of how this removal process works.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
2 Advanced Water Management Centre (AWMC), The University of Queensland, St. Lucia, Australia
3 Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch), Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Hong Kong, PR China
4 State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou, PR China