It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The ability to engineer metamaterials with tunable nonlinear optical properties is crucial for nonlinear optics. Traditionally, metals have been employed to enhance nonlinear optical interactions through field localization. Here, inspired by the electronic properties of materials, we introduce and demonstrate experimentally an asymmetric metal-semiconductor-metal (MSM) metamaterial that exhibits a large and electronically tunable effective second-order optical susceptibility (χ(2)). The induced χ(2) originates from the interaction between the third-order optical susceptibility of the semiconductor (χ(3)) with the engineered internal electric field resulting from the two metals possessing dissimilar work function at its interfaces. We demonstrate a five times larger second-harmonic intensity from the MSM metamaterial, compared to contributions from its constituents with electrically tunable nonlinear coefficient ranging from 2.8 to 15.6 pm/V. Spatial patterning of one of the metals on the semiconductor demonstrates tunable nonlinear diffraction, paving the way for all-optical spatial signal processing with space-invariant and -variant nonlinear impulse response.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California, USA
2 Department of Electrical & Computer Engineering, University of California, San Diego, La Jolla, CA, USA
3 Department of Electrical & Computer Engineering, University of California, San Diego, La Jolla, CA, USA; Center for Memory and Recording Research, University of California, San Diego, La Jolla, CA, USA