It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this study, we propose a self-activated radical doping (SRD) method on the catalyzed surface of amorphous oxide film that can improve both the electrical characteristics and the stability of amorphous oxide films through oxidizing oxygen vacancy using hydroxyl radical which is a strong oxidizer. This SRD method, which uses UV irradiation and thermal hydrogen peroxide solution treatment, effectively decreased the amount of oxygen vacancies and facilitated self-passivation and doping effect by radical reaction with photo-activated oxygen defects. As a result, the SRD-treated amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) showed superior electrical performances compared with non-treated a-IGZO TFTs. The mobility increased from 9.1 to 17.5 cm2/Vs, on-off ratio increased from 8.9 × 107 to 7.96 × 109, and the threshold voltage shift of negative bias-illumination stress for 3600 secs under 5700 lux of white LED and negative bias-temperature stress at 50 °C decreased from 9.6 V to 4.6 V and from 2.4 V to 0.4 V, respectively.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea; LG Display Co., Ltd., 1007, Deogeun-ri, Wollong-myeon, Paju-si, Gyeonggi-do, Republic of Korea
2 School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
3 LG Display Co., Ltd., 1007, Deogeun-ri, Wollong-myeon, Paju-si, Gyeonggi-do, Republic of Korea