It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Ethanol has extensive effects on sleep and daytime alertness, causing premature disability and death. Adenosine, as a potent sleep-promoting substance, is involved in many cellular and behavioral responses to ethanol. However, the mechanisms of hypnotic effects of ethanol remain unclear. In this study, we investigated the role of adenosine in ethanol-induced sleep using C57BL/6Slac mice, adenosine A2A receptor (A2AR) knockout mice, and their wild-type littermates. The results showed that intraperitoneal injection of ethanol (3.0 g/kg) at 21:00 decreased the latency to non-rapid eye movement (NREM) sleep and increased the duration of NREM sleep for 5 h. Ethanol dose-dependently increased NREM sleep, which was consistent with decreases in wakefulness in C57BL/6Slac mice compared with their own control. Caffeine (5, 10, or 15 mg/kg), a nonspecific adenosine receptor antagonist, dose-dependently and at high doses completely blocked ethanol-induced NREM sleep when administered 30 min prior to (but not after) ethanol injection. Moreover, ethanol-induced NREM sleep was completely abolished in A2AR knockout mice compared with wild-type mice. These findings strongly indicate that A2AR is a key receptor for the hypnotic effects of ethanol, and pretreatment of caffeine might be a strategy to counter the hypnotic effects of ethanol.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
2 Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts, USA