Abstract

Wave-like propagation of [Ca2+]i increases is a remarkable intercellular communication characteristic in astrocyte networks, intercalating neural circuits and vasculature. Mechanically-induced [Ca2+]i increases and their subsequent propagation to neighboring astrocytes in culture is a classical model of astrocyte calcium wave and is known to be mediated by gap junction and extracellular ATP, but the role of each pathway remains unclear. Pharmacologic analysis of time-dependent distribution of [Ca2+]i revealed three distinct [Ca2+]i increases, the largest being in stimulated cells independent of extracellular Ca2+ and inositol 1,4,5-trisphosphate-induced Ca2+ release. In addition, persistent [Ca2+]i increases were found to propagate rapidly via gap junctions in the proximal region, and transient [Ca2+]i increases were found to propagate slowly via extracellular ATP in the distal region. Simultaneous imaging of astrocyte [Ca2+]i and extracellular ATP, the latter of which was measured by an ATP sniffing cell, revealed that ATP was released within the proximal region by volume-regulated anion channel in a [Ca2+]i independent manner. This detailed analysis of a classical model is the first to address the different contributions of two major pathways of calcium waves, gap junctions and extracellular ATP.

Details

Title
Astrocyte calcium waves propagate proximally by gap junction and distally by extracellular diffusion of ATP released from volume-regulated anion channels
Author
Fujii, Yuki 1 ; Maekawa, Shohei 1 ; Morita, Mitsuhiro 1 

 Kobe University Graduate School of Science, Department of Biology, Kobe, Japan 
Pages
1-15
Publication year
2017
Publication date
Oct 2017
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1957858800
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.