Abstract

We have proposed solid elastic metamaterials with anisotropic stiffness and inertial mass simultaneously, denoted as the dual anisotropy, for the potential use of elastic wave controlling. The dual anisotropy has been designed weakly dispersive in a broad frequency range, wherein broadband anisotropic mass is achieved by employing the sliding-interface concept in fluid-solid composites. Results have been validated through the band-structure, effective-medium, and modal-field analyses. We have further found that the proposed solid metamaterial, when its shear stiffness is diminished until neglected, would reduce to the pentamode-inertial material model. This reduced model is the general form of mediums following transformation acoustic theory, which has been proved vital for acoustic wave controlling. Our studies are expected to pave a new route toward broadband acoustic and elastic wave controlling using dual-anisotropic solid metamaterials.

Details

Title
Broadband dual-anisotropic solid metamaterials
Author
Cheng, Yong 1   VIAFID ORCID Logo  ; Zhou, Xiaoming 1   VIAFID ORCID Logo  ; Hu, Gengkai 1 

 Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education and School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China 
Pages
1-7
Publication year
2017
Publication date
Oct 2017
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1957861992
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.