It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In plants, virus-induced gene silencing (VIGS) is a popular tool for functional genomic studies or rapidly assessing individual gene functions. However, molecular details regarding plant responses to viral vectors remain elusive, which may complicate experimental designs and data interpretation. To this end, we documented whole transcriptome changes of tomato elicited by the application of the most widely used tobacco rattle virus (TRV)-based vectors, using comprehensive genome-wide analyses. Our data illustrated multiple biological processes with functional implications, including (1) the enhanced activity of miR167 in guiding the cleavage of an auxin response factor; (2) reduced accumulation of phased secondary small interfering RNAs from two genomic loci; (3) altered expression of ~500 protein-coding transcripts; and (4) twenty long noncoding RNAs specifically responsive to TRV vectors. Importantly, we unraveled large-scale changes in mRNA alternative splicing patterns. These observations will facilitate future application of VIGS vectors for functional studies benefiting the plant research community and help deepen the understanding of plant-virus interactions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
2 Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
3 Boyce Thompson Institute, Cornell University, Ithaca, NY, USA; USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA
4 Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA; Department of Biological Sciences, Mississippi State University, Starkville, MS, USA