It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Carbon-based supercapacitors have aroused ever-increasing attention in the energy storage field due to high conductivity, chemical stability, and large surface area of the investigated carbon active materials. Herein, eucalyptus-derived nitrogen/oxygen doped hierarchical porous carbons (NHPCs) are prepared by the synergistic action of the ZnCl2 activation and the NH4Cl blowing. They feature superiorities such as high specific surface area, rational porosity, and sufficient N/O doping. These excellent physicochemical characteristics endow them excellent electrochemical performances in supercapacitors: 359 F g−1 at 0.5 A g−1 in a three-electrode system and 234 F g−1 at 0.5 A g−1 in a two-electrode system, and a high energy density of 48 Wh kg−1 at a power density of 750 W kg−1 accompanied by high durability of 92% capacitance retention through 10,000 cycles test at a high current density of 10 A g−1 in an organic electrolyte. This low-cost and facile strategy provides a novel route to transform biomass into high value-added electrode materials in energy storage fields.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 West Pomeranian University of Technology, Szczecin, Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, Szczecin, Poland (GRID:grid.411391.f) (ISNI:0000 0001 0659 0011)
2 Shanghai Institute of Space Power-Sources (SISP), Shanghai, China (GRID:grid.464215.0) (ISNI:0000 0001 0243 138X)